RLogic : Recursive Logical Rule Learning from Knowledge Graphs 논문 리뷰
Paper : Presentation content :Main interest지식 그래프(Knowledge Graph, KG)는 실세계 지식들을 담고 있는 특수 그래프이다. 노드는 entity, 방향 간선은 relation이라고 하며 하나의 triplet(i.e. $(h, r, t)$ 또는 $r(h, r)$)을 데이터 단위로 한다. 이를 사용해 추천 시스템, question answering, 다양한 추론 등에 활용할 수 있기 때문에 활용도가 무궁무진한 그래프 구조이다. 본 연구에서는 이런 semantic 데이터를 사용해 논리적 추론을 할 수 있는 모델을 만들고자 한다. 가령 위의 예시에서 $(Tim\, Cook,Succesor\,of,Steve\, Jobs)\wedge(Steve\, Jobs,For..
Differentiable Learning of Logical Rules for Knowledge Base Reasoning(Neural LP) 논문 리뷰
Paper :Main interest지식 그래프(Knowledge graph, KG)는 방대한 크기의 정보 담고 있으며 2개의 entity(h, t)와 1개의 relation(r)으로 하나의 triplet을 구성하고 이것이 KG의 데이터 단위가 된다. 예를 들어 $(h, r, t)$로 triplet을 표현할 수 있고 조금 더 relation 중심으로 표현하면 $r(h, t)$로 표기할 수 있다. 다만 주의해야 할 것은 일반적으로 $(h, r, t)$는 h->r->t를 의미하지만 이 연구에서는 $r(h, t)$를 더 많이 사용하고 t->h 방향으로 relation이 뻗어간다. 앞으로 글에서 $r(h, t)$를 표준으로 사용하겠다. 다양한 데이터를 담고 있는 만큼 지식 데이터(Knowledge base, K..